
r- BI~~OIC FILE COPY/ %:
May 1988 "' tuI UILU-ENG-88-2220

o COORDINATED SCIENCE LABORATORY
t College of Engineering 0'

Substructure
Discover DTIC
in SUBDUE SLECTE'

JUL 1 4 19881J

Lawrence B. Holder

1%.-

k,.. .-" .

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN ii.

Approved for Public Release. Distribution Unlimited. '

" -

UNCLASSIFIED

sECUirty -LASSii;<ATIN 0; TH.IS rAGETr

REPORT DOCUMENTATION PAGE
SI. REPORT SECURITY CLA.SIFICAtTION b. RESTRIC-rVE MARKINGSI

Unclassified ,I_ None
2a. SCURITY CLA.SSIFICATION AUTHORITY 3. OISTRISUTiONIAVALAGIUTY OF REPORT

2b. OECL.-SSFIC1ON i _OWNGRAOING SCH __DULE Approved for public release;
distribution unlimited

4, PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

uILU-ENG-88-2220
61. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 74. NAME OF MONiTORING ORGANIZATION

Coordinated Science Lab (if appakabie)
University of Illinois N/A NSF, ONR, DARPA

6r. AOORESS (Gry, Star , and Z Pa) 7b. AOORESS (City, State, and ZIP Cod.)
1800 G. Street, Washington D.C., 20552

Ua01 W. Springfield Avenue 800 N. Quincy, Arlington, VA 22202
Urbana, IL 61801 1400 Wilson Blvd, Arlington VA, 22209-2308

S a. NAME OF FUNDING i PON~SORING 8b. OFFICE SYMBOL 9. PROCUREM INSTUETIETFIA1NNME
ORGANIZATION (f a) NSF 1ST- 11-I170, N00014-8 CK1086ERNSF, ONR, DARPA N -17074

'S7, N00014-87-K-0874
8c. ADDRESS (City, State. and ZIP Cod*) 10. SOURCE OF FUNDING NUMBERS
1800 G. Street, Washington D.C. 20552 PROGRAM PROJECT ITASK WRK UNIT
800 N. Quincv, Arlington VA 22202 ELEMENT NO. NO .jAZSSIC; NO.
1400 Wilson 21%:d. Arlington VA 22209-2308
11. TITLE (I, ILu06 S unty .aicao on)
Substructure Discover-7 in SLBDUE

12. PERSONAL AUTHOR(S) Holder, Lawrence B.

P.13a. TYPE OF REPORT 1I3b. TIME COVERED 14i. DAT OF REPORT (Year~M~, Dy S. PAGE COUNT
Tachnical FROM _TO MAv 1988 12

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 1B. SUBJECT TERMS (Contnue on ievese it ,mwy and ,enfy y block .mbr)
FIELD GROUP SUBROUP SUBDUE,

best-firzt search,

9. ABSTRACT (Continu, on revea if neConaty and iden" by block number)

This paper describes the substructure discovery method used in the SUBDUE system. The

method involves a computationally constrained best-first search guided by four heuristics.

cognitive savings, compactness. connectivity and coverage. The two main processes contained in

this method are substructure generation and substructure selection. Substructure generation is the

process by which new substructures are generated from previously considered substructures- The

second process. substructure selection. chooses the best substructure among alternative
substructures according to the four heuristics. Each of the four heuristics are described along with

their role in the evaluation of a substructure. After the generation and selection processes are

described. the substructure discovery algorithm is presented. Two examples demonstrate

* SUBDUEs ability to discover substructure and the advantages to be gained by other learning

"is systems from the discovery of substructure concepts. (J)

2 0 .D I T R, BU n O N i = A V A I L u r Y O F A 8 T R AC T 2 1'. A B ST R A C T E C U R I T Y C L AS S I F C A T O N
MUNCLASSFIED4JNLIMITED C SAME AS RPT. C3]OTIC USERS Unclassified

P?22A NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPH'ONE (incude Area od) Z 27OFFICE SYMBOL

00 FORM 1473. 84MAR 3 APR diton may be usd untilexhaued. SECURITY CLASSIFI ATION OF THIS PAGE
All other editions are obsolete. m;UCLASS IFIED

Substructure Discovery in SUBDUE*

Lawrence B. Holder ISETED

Artificial Intelligence Research Group Acc..on F or
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign T &
1101 West Springfield Avenue ori, D .

Urbana, IL 61801 -

Telephone: (217) 333-9220
Internet: holder@uicsl.csl.uiuc.edu i3Y

March 1988

,'A. i -A-pi J

ABSTRACT

This paper describes the substructure discovery method used in the SUBDUE system. The
method involves a computationally constrained best-first search guided by four heuristics:
cognitive savings, compactness. connectivity and coverage. The two main processes contained in
this method are substructure generation and substructure selection. Substructure generation is the
process by which new substructures are generated from previously considered substructures. The
second process, substructure selection, chooses the best substructure among alternative
substructures according to the four heuristics. Each of the four heuristics are described along with
their role in the evaluation of a substructure. After the generation and selection processes are

* , described, the substructure discovery algorithm is presented. Two examples demonstrate
SUBDUE's ability to discover substructure and the advantages to be gained by other learning
systems from the discovery of substructure concepts.

*4'-

o This research was partially supported by the National Science Foundation under grant NSF IST-85-11170, the OfficeSof Nava, Research under grant N00014-82-K-0186. by the Defense Advanced Research Pr5TcsAg-n- 'uder grant
N00014-87-K-0874. and by a giftrom-Texa-s Thit--ents, Inc.an yagfI- o ea

1. Introduction

The amount of detailed information available from a real-world environment
os overwhelming. Yet, humans hae the ability to ignore minute detail and extract

information from the environment at a level of detail that is appropriate for the
purpose of the observation [Witkin83]. Machine learning systems that operate in
>.,Ch a detailed structural environment must be able to abstract over unnecessary
_e-Lail in the input and determine which attributes are relevant to the learning
-ask.

Substructure discovery is the process of identifying concepts describing
interesting and repetitive "chunks" of structure within structural descriptions of
the environment. Once discovered, the substructure concept can be used to
simplify the descriptions by replacing all occurrences of the substructure with a
single form that represents the newly discovered concept. The discovered
substructure concepts allow abstraction over detailed structure in the original
descriptions and provide new, relevant attributes for subsequent learning tasks.

I This paper describes the substructure discovery method used in the SUBDUE
s stem [Holder88]. The SUBDUE system consists of a substructure discovery
module, a substructure specialization module for specializing the substructures
discovered by SUBDUE, and an incremental substructure background knowledge

V; module that retains previously discovered substructures for use in subsequent
Ulearning tasks. Only the discovery module of SUBDUE is presented in this paper.

Section 2 defines substructure and related terms. Section 3 discusses the
substructure generation process, and Section 4 defines the heuristics used in the

, substructure selection process. Section 5 outlines SUBDUE's substructure
discovery algorithm, and Section 6 illustrates some examples of SUBDUE's
performance. Finally, Section 7 summarizes the substructure discovery process in
SUBDUE and discusses future work.

2. Substructure

In a graphical sense, a substructure is a collection of nodes and edges

r comprising a connected subgraph of a larger graph. However, the substructures
discovered by SUBDUE represent more than just a syntactic definition of a
subgraph. Substructures are concepts. Substructure discovery is concerned with
identifying substructures that represent interesting concepts, not just interesting

gra structure. Thus, substructures, or equivalently substructure concepts,
.r should be interpreted as both collections of structurally related objects and as the

S." conjunctive concepts describing them.

An appropriate language for describing substructures is an extension to the
first order logic called Variable-valued Logic system 2 (VL 2) [Michalski80], which

• .is a subset of the Annotated Predicate Calculus (APC) [Michalski83a]. Figure 1
illustrates an input example along with the substructure discovered by SIJBDUE.
Both the input exanipie and the substructure are expressed in the same
substructure description language. The expression for the input example shown in

16 r2i1w kt

Figure I is

< [SHAPE(Ti)=TRIAN\GLEk[SHAPE(T2)=TR IANGLE]IISHAPE(T3)=T-RIAN-\GLE]
[SHAPE(T4)=TR LANGLEIIISH APE(Sl)=SQU:AREIIISHAPE(S2)=SQU:AREI
(SHAPE(S3)=SQU:ARElISHAPE(S4)=SQLAREI[SHAPE(R1)=RECTANGLE]
[SHAPE(CI)=CIRCLEI[COLOR(TI)=RED][COLOR(T2)=RED][COLOR(T3)=BLUE)
[iCOLOR (T4)=BL UE][COLOR (S I)=GR EEN]I[COLOR (2)=BLUE][COLOR (S3)=BL LE I

- [COLOR (S4)=RED[O.N(TI 1.SI)=T][O.N(S 1,R I)=TIIION(C1 .R I)=T][ONX(R I .T2)=T]
[O(RI 1,T3)=T][ON(RI .T4)=T]IO.N(T2 .S2)=TR[ON(T3.53)=TiO.N(T4 .S4)=TI >

If each object of the substructure is assigned a symbolic name as in Figure 1 (e.g.,
OBJECT-0001, OBJECT-0002), then the expression for the substructure is

< [SHAPE(OBJECT-OOOI)=TRIAN\GLE]1[SHAPE(OBJECT-00o2)=SQL'ARE]
[O.N(OBJECT-OOO I.OBJECT-O002)=TI >

A substructure is either a single object or a non-empty set of connected
relations. The relations of a substructure are connected if the graph representation
of the substructure, where objects are nodes and relations are edges in the graph, is

* connected. A selector relation consists of the selector relation name, a non-empty
set of objects as arguments and the value of the selector relation. Selector
relations are henceforth referred to as relations. An object is a primitive element
from which relations and, ultimately, substructures are defined.

r For the following discussions, some terminology is needed to describe
U important aspects of substructures as they relate to a given set of input examples.

An occurrence of a substructure in a set of input examples is a set of objects and
relations from the examples that match, graph theoretically, to the graphical
representation of the substructure. For example, the occurrences of the

3, substructure in the input example of Figure 1 are

<IiON(Ti SlI)=T][SHAPE(T1)=TRIANGLEI[SHAPE(Sl)=SQUARE]>
< [ON(T2.52)=TIISHAPE(T2)=TRIANGLEIfSHAPE(S2)=SQUARE] >
<[ON(T3 53)=TJ[SHAPE(T3)=TRIANGLEJ(SHAPE(S3)=SQUAREIJ>
< [ON(T4 54)=TI[SHAPE(T4)=TRIANGLEIfSHAPE(S4)=SQUARE] >

0
Input Example Substructure

ed -

green- SI ciA

R1 4- OBJECT-0001

red52 -ble -OBJECT-0002

blue blue

Figure 1. Example Substructure

S 2

A neighboring relation of an occurrence of' a substructure is a relation in the
input example that is not contained in the occurrence, but has at least one object
from the occurrence as an argument. For example, the neighboring relations of the
first occurrence listed above are [COLOR(T1)=RED], [COLOR(SI)=GREEN] and
[ON(S1.R1)=T].

An external connection of an occurrence of a substructure is a neighboring
. relation of the occurrence that has as an argument at least one object not contained

in the occurrence. In other words, an external connection of an occurrence of a
substructure is a relation that relates one or more objects in the occuience Lo one
or more objects not in the occurrence. For the first occurrence listed above, there
is only one external connection, [ON(S1.R1)=T].

3. Substructure Generation

An essential function of any substructure discovery system is the generation
of alternative substructures. The substructure generation process constructs new
substructures from the objects and relations in the input examples. SUBDUE's
substructure discovery algorithm employs an approach to substructure generation
called minimal expansion. An expansion approach begins with smaller
substructures and expands them by appending additional structure from the input
examples. Minimal expansion expands the substructures by appending thejsmallest amount of additional structure. In the context of substructures, this is
equivalent to adding one neighboring relation. Thus, minimally expanding a
substructure to form a new substructure involves appending one neighboring
relation to the substructure. For example, according to the three neighboring
relations of the occurrence, <[ON(T1,S1)=T] [SHAPE(T1)=TRIANGLE]

ai [SHAPE(S1)=SQUARE]>, the substructure in Figure 1 would be expanded to generate
. the following three substructures

% < [SHA PE(OBJECT-0001)=TRIANGLE][SHAPE(OBJECT-0002)=SQUARE]
[ON(OBJECT-O00 1,OBJECT-0002)=T][COLOR(OBJECT-0001)=RED] >

< [SHAPE(OBJECT-OO 1)=TRIANGLE][SHAPE(OBJECT-0002)=SQUAREI
0 [ON(OBJECT-0001.OBJECT-0002)=T][COLOR(OBJECT-O002)=GREEN] >

<[SHAPE(OBJECT-OOO1)=TRIANGLE][SHAPE(OBJECT-0002)=SQUARE]
ON(OBJECT-0001.OBJECT-0002)=T][ON(OBJECT-0002.OBJECT-0003)=T]>

-:- '.'SUBDUE uses an exhaustive minimal expansion technique for generating
alternative substructures from a single substructure. The exhaustive version of

* this technique generates new substructures by considering all possible neighboring
V ~ relations of the original substructure. To avoid the combinatorical explosion of

this process, SUBDUE uses the substructure selection process to select the most
p-omising substructure for expansion.

* -4. Substructure Selection

After using the method from the previous section to construct a set of
alternative substructures, SUBDUE's substructure discovery algorithm chooses

2V 3

I|

one ol these substructures as the best hypothetical substructure. This is the task
of substructure selection. The method of selection employs a heuristic evaluation
lunction to order the set of' alternative substructures based on their heuristic
cuality. This section presents the four heuristics used by SUBDUE to evaluate a
substructure: cognitive savings, compactness, connectivity and coverage.

The first heuristic, cognitive savings, is the underlying idea behind several
utility and data compression heuristics employed in machine learning [Minton8",
Whitehall87, Wolff82]. Cognitive savings measures the amount of data
compression obtained by applying the substructure to the input examples. In
other words, the cognitive savings of a substructure represents the net reduction
in complexity after considering both the reduction in complexity of the input
examples after replacing each occurrence of the substructure by a single
conceptual entity and the gain in complexity associated with the conceptual
definition of the new substructure. The reduction in complexity of the input
examples can be computed as the number of occurrences of the substructure
multiplied by the complexity of the substructure. Thus, the cognitive savings of a
substructure, S, for a set of input examples, E, is computed as

cognitive-savings(SE) = complexity-reduction(S.E) - complexity(S)
= [number of occurrences(SE) * complexity(S)] - complexity(S)
= complexity(S) * [numberof occurrences(S.E) - 1]

In the above computation of cognitive savings the complexity of the
substructure is typically a function of the number of objects, the number of
relations, and the aritv of the relations in the substructure. However, the number
of occurrences of the substructure is more complicated to measure, because
occurrences may overlap in the input examples. For instance, Figure 2 shows two

q input examples along with the substructure found by the discovery process. Here,
the circles represent objects and the lines represent relations. At first glance, the
number of occurrences of the substructure in Figure 2a may appear to be four;
however, the number of non-overlapping occurrences is less than four. Figure 2a
illustrates the problem of object overlap, and Figure 2b illustrates the problem of
relation overlap. In view of the overlap problem, computation of the number of
occurrences must reflect the number of unique occurrences.

Input Example Substructure Input Example Substructure
*

(a) Object Overlapping (b) Object and Relation Overlapping
, Substructure Substructure

Figure 2. Overlapping Substructures

4 461

In SUBDUE's substructure discovery algorithm, the compiexViz S) is defined as
the size of the substructure, S, where the size is computed as the sum of the
,-umber of objects and relations in the substructure. As discussed above, the
nwu7zer_of_occurrences(S.E) is more complicated to compute. because the
occUrrences may overlap in the input examples. In view of the overlap problem,
simply counting all objects and relations in the overlapping occurrences would
incorrectly state the true cognitive savings of the substructure. Therefore, the
L onplexitVreduction'S,E) is redetined to be the number of objects and relations in
the occurrences of the substructure, where overlapping objects and relations are
counted only once. The number of such objects is referred to as #unique-objects,
and the number of such relations is referred to as #uniquerelations. Thus, the

cognitive savings of a substructure, S, with occurrences, OCC, in the set of input
examples, E. is computed as

cognitive savings(S.E) = complexity reduction(SE) - complexity(S)
= [#uniqueobjects(OCC) + #unique-relations(OCC)] - complexity(S)
= [#unique objects(OCC) + #unique relations(OCC)] - size(S)
= [#unique-objects(OCC) + #unique relations(OCC)] - [#objects(S) + #relations(S)]

As an example of the cognitive savings calculation, consider the input
examples and corresponding substructures in Figure 2. If each circle is considered

an object and each line a relation, then for each of the two substructures,
*#objects(S) = 4, #relations(S) = 4, and there are four occurrences of the

substructure in the input example. In Figure 2a, #unique-objects(OCC) = 13 and
, ,.. #unique-relations(OCC) = 16; thus, cognitive-savings = [13 + 161 - [4 + 4] = 21.

In Figure 2b, #unique objects(OCC) = 10 and #uniquerelations(OCC) = 13; thus,
cognitive savings = [10 + 13] -- [4 + 4] = 15.

The second heuristic, compactness, measures the "density" of a substructure.
This is not density in the physical sense, but the density based on the number of
relations per number of objects in a substructure. The compactness heuristic is a

generalization of Wertheimer's Factor of Closure, which states that human
attention is drawn to closed structures [Wertheimer39]. Graphically, a closed

* substructure has at least as many relations as objects, whereas a non-closed
substructure has fewer relations than objects [Prather76]. Thus, closed
substructures have a higher compactness value. Compactness is defined as the
ratio of the number of relations in the substructure to the number of objects in
the substructure.

compactness(S) = #relations(S)
#objects(S)

For each of the substructures in Figure 2, #relations(S) = 4 and #objects(S) = 4;
thus, compactness = 4/4 = 1.

6 The third heuristic, connectivity, measures the amount of external connection
in the occurrences of the substructure. The connectivity heuristic is a variant of
Wertheimer's Factor of Proximity [Wertheimer39], and is related to earlier

* 5

numerical clustering techniques [Zahn.l]. These works demonstrate the human
preference for "isolated" substructures, that is, substructures that are minimally
related to adjoining structure. Connectivity measures the "isolation" of a
substructure by computing the average number of external connections over all
the occurrenccs of the substructure in the input examples. The number of
external connections is to be minimized; therefore, the connectivity value is
computed as the inverse of the average to arrive at a value that increases as the
number of external connections decreases. Thus, the connectivity of a
substructure, S, with occurrences, OCC, in the set of input examples, E, is
computed as

,(o~cc external connections(i) -1
~connectivity(S.E)=

Again consider Figure 2. Each substructure has four occurrences in the input
example. For both substructures the two innermost occurrences both have 4
external connections and the two outermost occurrences both have 2 external
connections, for a total of 12 external connections. Thus, connectivity = (12/4)i
= 1,3.

The final hiuristic, coverage, measures the amount of structure in the input
examples described by the substructure. The coverage heuristic is motivated from

S. research in inductive learning and provides that concept descriptions describing
,. more input examples are considered better [Michalski83b]. Coverage is defined as

the number of unique objects and relations in the occurrences of the substructure
* •divided by the total number of objects and relations in the input examples. Thus,

the coverage of a substructure, S, with occurrences, OCC, in the set of input
examples, E, is computed as

coverage(S.E) = #unique-objects(OCC) + #unique-relations(OCC)

#objects(E) + #relations(E)

For both substructures in Figure 2 the occurrences of the substructure describe
every object and relation in the input example; thus, coverage = 1.

Ultimately, the value of a substructure, S, for a set of input examples, E, is
computed as the product of the four heuristics.

value(S.E) = cognitive savings(S.E) * compactness(S) * connectivity(S.E) * coverage(S.E)

In this way the compactness, connectivity and coverage heuristics refine the
cognitive savings by increasing or decreasing the total value to reflect specific
qualities of the substructure. Thus, for the substructure in Figure 2a, value = 21 *

0, 1 * 1/3 * 1 = 7.0; and for the substructure in Figure 2b. value = 15 * I * 1/3 * 1 =

5.0. Applying the heuristic evaluation to the substructure of Figure 1, value = 15
3/2 * 1/3 * 20/37 = 4.054.

* 6

S

.i, ,'

5. Substructure Discovery Algorithm

Ideally, an algorithm for discovering substructure should converge on the best
•,Llbst.--ucLire in terms of the goa th the discovery task. The goal of the

Lil ubstructure discovery algorithm, in general. is to identify the substructure in the
input examples that maximizes the capacity for complexity reduction and
maximizes the interestingness of' the substructure concept. SUBDUE measures
both these characteristics with the heuristic evaluation function defined in Section
4. However, the number of possible substructures is exponential in the number of
relations within the given input examples. If left unconstrained, the algorithm
may eventually consider all possible substructures. SUBDUE imposes a
computational limit on the algorithm to constrain the number of substructures
considered.

, The substructure discovery algorithm used by SUBDUE is a computationally

constrained best-first search guided by the substructure generation and selection
processes. The algorithm is given one or more input examples and a limit on the
amount of computation performed. The algorithm begins by forming the set, S, of
alternative substructures. Initially, the set has only one element, the substructure
corresponding to a single object, with as many occurrences as there are objects in
the input examples. As the algorithm progresses, the discovered substructures are
kept in the set, D, which is initially empty.

The next step in the algorithm is a loop that continuously generates new
substructures from the substructures in S until either the computational limit is
:xceeded or the set of alternative substructures, S, is exhausted. The loop begins
by selecting the best substructure in S. Here, the value computation of Section 4
is employed to choose the best substructure from the alternatives in S. Once
selected, the best substructure is stored in BESTSUB and removed from S. Next.
if BESTSUB does not already reside in the set D of discovered substructures, then
BESTSUB is added to D. The substructure generation method ot Section 3 is then

; *.;. used to construct a set of new substructures by minimally expanding BESTSUB.
The newly generated substructures that have not already been considered by the
algorithm are added to S, and the loop repeats. When the loop terminates, D
contains the set of discovered substructures.

Thus, the substructure discovery algorithm searches for the heuristically best
substructure until all possible substructures have been considered or the amount
of computation exceeds the given limit. Due to the large number of possible
substructures, the algorithm typically exhausts the allotted computation before
considering all possible substructures. Therefore, the algorithm may not find the
substructure that maximizes the heuristic evaluation function. However,

"" experiments in a variety of domains indicate that the heuristics perform well in
- .guiding the search toward more promising substructures [Holder88].

7

6. Examples

This section presents two examples that demonstrate SUBDUE's ability to
d4scover substructure and the advantages to be gained by other learning systems

- rom the discovery of substructure concepts. Each example is run on a Texas
-. :1

'".,.Instruments Explorer using a Common Lisp implementation of the SUBDUE
Tv 1 em.

- 6.1. Example 1

Example I illustrates a possible application of the substructure discovery
algorithm to the task of discovering macro-operators in plans. The example is
drawn from the "blocks world" domain. The operators for this domain are taken

.rom [NilssonSO]i: pickup, putdown, stack and unstack.

For this example, suppose the initial world state is as shown in Figure 3a, and
the desired -oal is in Figure 3b. The proof tree of operators to achieve the goal is

- shown in Figure 3c. With this proof tree as input, SUBDUE discovers the
* " substructure shown in Figure 3d after considering 19 alternative substructures.

The substructure represents a macro-operator for accomplishing a subgoal to stack
a block, x, on another block, z, when a block, y, is already on top of block z.

Macro-operators discovered by SUBDUE can be used in several ways.
Replacing the occurrences of the macro-operator in the original proof tree by
instantiations of the macro-operator can reduce the storage requirements of the
schema constructed from the entire proof tree. Retaining the macro-operators

, "discovered within a proof tree would provide sub-schemas in addition to the
-~ schemas learned by an explanation-based learning (EBL) system [DeJong86,

Mitchell86]. The sub-schemas would increase the amount of operationalized

41 e
b f [on(a.c)][on(d.g)]

F~4..-a] c d g

(a) Initial World State (b) Goal

.,, goal

stack(d.g) stack(a.c) stack(x.z)

unstack(f.g) pickup(d) unstack(b.c) pickup(a) unstack(y.z) pickup(x)

unstack(e.f) putdown(e) putdown(f) putdown(b) putdown(y)

(c) Proof Tree (d) Macro-Operator

Figure 3. Proof Tree Example

8

- . % -v" v- " ,- ,,., v .r ,.W - . - .. ., -

0

knowiedge available to the EBL system for explaining subsequent examples.

6.2. Example 2

Example 2 combines SUBDUE with the INDUCE system [Hoff83] to
demonstrate the improvement gained in both processing time and quality of
results when the examples contain a large amount of structure. A Common Lisp
version of INDUCE was used for thi example running on the same Texas
Instruments Explorer as the SUBDUE system.

Figure 4a shows a pictorial represcn.ation of the three positive and three
inegative examples given to INDUCE. Each of the symbolic benzene rings in Figure
-1a represents the more complex structure in the left side of Figure 4c. The actual
input specification for the six examples contains a to~al of 1-8 relations of the
form [SINGLE-BOND(C1,C2)=T] or [DOUBLE-BOND(C1,C2)=T]. After 701 seconds of
processing time, INDUCE produces the concept shown in Figure 4b. Next, all six
examples are given to SUBDUE using the same 1 78 relations. After considering
seven alternative substructures for 101 seconds of processing time, SUBDUE
discovers the substructure concept of a benzene ring as shown on the left side of
Figure 4c. The newly discovered substructure is then used to reduce the
complexity of the original examples by replacing each occurrence of the benzene
ring with a single relation, i.e., [BENZENE-RING(C1,C2,C3,C4.C5.C6)=T]. Using the
reduced set of positive and negative examples, INDUCE produces the concept on

S the right side of Figure 4c in 185 seconds of processing time. Here, the symbolic
benzene rings represent the BENZENE-RING relation, not the complex structural
representation used in the original descriptions of the examples.

By abstracting over the structure representing the benzene ring, SUBDUE
p allows INDUCE to discover the true concept distinguishing the positive and
*. negative examples; namely, benzene rings are paired across one carbon atom in the

V positive examples, but not in the negative examples. INDUCE represents this

I (ol OO \c
0:. c- c- c c -c- -c c- c- c-c- cY C

~~I~ C/ \cCCC C

'6o II I cCG I I I II II C
"-. C CC /C

i .Ec-c-c-C c-C-c-c-C c-C-C-c-C-

G c I I I I I I I 701 sec. 101 sec. 185 sec.
C CC C C C C C C

. .- (a) Pictorial Representation of Examples (b) INDUCE (c) SUBDUE-- INDUCE

Figure 4. SUBDUE/INDUCE Example

* 9

concept in terms of the abstract benzene ring featr" provided by SUBDUE.
Furthermore. the processing time of SUBDUE and INDUCE combined (286
seconds) represents a speedup of 2.5 over that of INDUCE alone. This example
"demo, strates how the substructures discovered by SUBDUE can improve the
resIults ot other learning systems by abstracting over detailed structure in the
1i2C'mit and providing new features.

. Conclusion

-, This paper describes the method used by the SUBDUE system to discover
substructures in structured examples. The method involves a computationally
constrained best-first search guided by four heuristics: cognitive savings,
compactness, connectivity and coverage. Alternative substructures are generated

.bv the minimal expansion technique that constructs new substructures by adding
minimal structure to previously considered substructures. The two examples
demonstrate SUBDUE's ability to find plausible substructures and the possible
uses of these substructures by other learning systems.

*Earlier work in substructure discovery can be found in Winston's ARCH
program [Winston'S]. Winston used several domain dependent methods to
identify recurring structure in the blocks world examples. Recent work in
substructure discovery includes Whitehall's PLAND system for discovering
substructure in action sequences [Whitehall87]. Whitehall uses the cognitive
savings heuristic along with three levels of background knowledge to discover
loops and conditionals in the sequences.

.In addit'on to the substructure discovery module, SUBDUE also contains a
substructure specialization module and a substructure background knowledge

-, module. Substructures discovered by SUBDUE are specialized by adding
*... additional structure. Both the original and specialized substructures are stored

hierarchically in the background knowledge. The background knowledge maythen direct the discovery process towards substructures similar to those already

* known. Future work and experimentation is necessary to evaluate the
. improvements gained by using the specialization and background knowledge
~ . modules and to incorporate other forms of background knowledge into SUBDUE's

,substructure discovery process.

0

01

• 10

REFERENCES

[DeJon~861
G. F. DeJong and R. J. Mooney, "Explanation-Based Learning: An Alternative
VieXV," AlacbIie Learning 1, 2 (April 1980), pp. 145-176. (Also appears as
Technical Report UILU-ENG-86-2208, Al Research Group, Coordinated
Science Laboratory, University of Illinois at Urbana-Champaign.)

[Hoff831
W. A. Hoff, R. S. Michalski and R. E. Stepp, "INDUCE 3: A Program for
Learning Structural Descriptions from Examples," Technical Report

- LUIUCDCS-F-83-90-1, Department of Computer Science, University of Illinois,
Urbana, IL, 1983.

[Holder88]
L. B. Holder, "Discovering Substructure in Examples," M.S. Thesis,

0 Department of Computer Science, University of Illinois, Urbana, IL, 1988.

[" ichalski80]
R. S. Michalski, "Pattern Recognition as Rule-Guided Inductive Inference,
IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 4 (July

E 1980), pp. 349-361.

[Nlichalski83a]
R. S. Michalski, "A Theory and Methodology of Inductive Learning," in
Machine Learning: An Artificial Intelligence Approach, R. S. Michalski, J. G.
Carbonell, T. M. \4itchell (ed.), Tioga Publishing Company, Palo Alto, CA,

Ii 1983, pp. 83-134.

[Nichalski83b]
R. S. Michalski and R. E. Stepp, "Learning from Observation: Conceptual
Clustering," in Machine Learning: An Artificial Intelligence Approach, R. S.

* Michalski, J. G. Carbonell and T. M. Mitchell (ed.), Tioga Publishing
Company, Palo Alto, CA, 1983, pp. 331-363.

" [M.inton87]
S. Minton, J. G. Carbonell, 0. Etzioni, C. A. Knoblock and D. R. Kuokka,

Acquiring Effective Search Control Rules: Explanation-Based Learning in the
* PRODIGY System," Proceedings of the 1987 International Machine Learning

Workshop, Irvine, CA, June 1987, pp. 122-133.

l [Mitchell86]
T. M. Mitchell, R. Keller and S. Kedar-Cabelli, "Explanation-Based

-.... Generalization: A Unifying View," Machine Learning 1, 1 (January 1986), pp.
P. 47-80.

-. [Nilsson80]

N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Company,

• 11

Palo Alto, CA, 1980.
[P:-ather-b]

R. Prather. DISL7e!tc MaUthematical Str-Uclures For Computer Science, Houghton
\liftlln Comp1-any. Ye 'ork, NY, 19-6.

\I. \CTrhcirnCr1. "Lawks of' Orclarization in Perceptual Forms,6 ' in .A Source Book
UP Ge:StaLt PS\'chl~iog-v, W. D. Ellis (ed.), Harcourt, Brace and Company, New
York, NY, 1939.

4 ~ B. L. Whitehall, "Substructure Discoverv in Executed Action Sequences," M".S.
Thesis; Department of Computer Science, Universitv of Illinois, Urbana, IL,
1 987. (Also appears as Technical Report UILUT-ENG-87-2256)

[WKinston-75]
P. H. Winston, "Learning Structural Descriptions from Examples,N in The
Psychology of Computer Vision, P. H. Winston (ed.), McGraw-Hill, New York,
NY1, 19'75, pp. 157-210.

[Witkin 83]
A. P. Witkin and J. M. Tenenbaum, "On the Role of Structure in Vision," in
Human and Ivachine Vision, J. Beck, B. Hope and A. Rosenfeld (ed.),

Acaemi PrssNewYork, NY, 1983, pp. 48 1-543.
[Wolff 82]

J. G. Wolff, "Language Acquisition, Data Compression and Generalization,"
Language and Communication 2, 1 (1982), pp. 57-89.

[Zahn7l]
* C. T. Zahn, "Graph-Theoretical Methods for Detecting and Describing Gestalt

* Clusters," I EEE Transactions on Computers C-20, 1 (January 1971), pp. 68-86.

17e.

6 12

0

'S..

0

0

0

I"

0

